
Contents lists available at SciVerse ScienceDirect

Environmental Development

Environmental Development 6 (2013) 1–6
2211-46

http://d
journal homepage: www.elsevier.com/locate/envdev
East African glacier loss and climate change:

Corrections to the UNEP article ‘‘Africa without
ice and snow’’
Dear Editor.

The authors of the recent article ‘‘Africa without ice and snow’’ (UNEP, 2013), reproduced from
United Nations Environment Programme (UNEP) Global Environmental Alert Service (GEAS)
(henceforth UNEP article/authors), undertook a laudable effort to bring the shrinkage of the peculiar
glaciers in East Africa to the attention of readers of Environmental Development. However, their article
contains some major flaws which could have been avoided by considering the current scientific
literature on the topic from climatological research. Thus, we feel it is necessary to add this
letter—updating readers with the current findings in the relevant scientific field, and providing UNEP
with this important information.

Our elucidations below are based on decade-long collaborative research (e.g., Hardy, 2003, 2011;
Mölg et al., 2003a, 2003b, 2006a, 2006b, 2008a, 2009a, 2009b, 2012; Kaser et al., 2004, 2010; Cullen
et al., 2006, 2007, 2012; Winkler et al., 2010; Prinz et al., 2011; Nicholson et al., 2012) that has aimed
to conduct meteorological measurements on the East African glaciers, quantify the local glacier
changes, and unravel the climatic drivers of East African glacier changes on local (e.g. Mölg and
Hardy, 2004; Cullen et al., 2007; Mölg et al., 2009a; Nicholson et al., 2012), regional (Mölg et al.,
2009b, 2012; Mölg and Kaser, 2011) and continental scales (Mölg et al., 2006a, 2009a) from a
physically-based perspective. We address three main issues of the UNEP article: the role of East
African glaciers as water reservoirs, the modern change in these glaciers, and the climatic reasons for
their modern shrinkage.
1. Water reservoirs

In the first paragraph the UNEP article states that glaciers are ‘‘one source of the planet’s
freshwater’’, and that the reduction of glaciers ‘‘will affect agriculture, domestic supplies,
hydroelectricity, and industry in the lowlands and cities far away from the mountains’’. By turning
immediately to the three glacierized massifs of East Africa (Mount Kenya, Kilimanjaro, Rwenzori) in
the next paragraph, this might suggest to some readers that shrinkage of East African glaciers could
have serious hydrological consequences on and around the three mountains. This is, however,
fundamentally wrong. It has been emphasized several times in the scientific literature that these
glaciers are way too small to act as water reservoirs on the mountain scale (Gilman, 1923; Kaser
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et al., 2004; Mölg et al., 2008b; Hardy, 2011). The most obvious example is given in Mölg et al.
(2008b) by a simple calculation: if one was to melt all the glacier volume on Kilimanjaro at once, and
distribute the melted water over the entire mountain, the water provided would only amount to 13 l
per square-meter (or 13 mm precipitation). Such an amount can easily fall within a few hours during
one rainfall event. The same order of magnitude applies to Mount Kenya and Rwenzori. Although
some local populations might retrieve water from high elevations, e.g. from glacier runoff on the
slopes of Kilimanjaro (Mölg et al., 2008b), the East African glaciers are of negligible importance for
the water budget of entire mountain catchments, and even more so for cities far away. A detailed
study on Kilimanjaro also finds that the hydrochemical composition of glacial melt water is
completely different from those of the lowland springs and rivers (McKenzie et al., 2010), supporting
the negligible role of glaciers as water reservoirs.

Only at the end of their manuscript do the UNEP authors state that East African glaciers are
unimportant for the mountains0 water budgets, but they argue with the wrong reason (role of
sublimation from the glaciers), which we clarify in Section 3. By contrast, the UNEP article’s
indication that the forest belts of the three mountains are essential water reservoirs for the local and
regional populations is supported by scientific evidence: (i) The hydrochemical analysis on
Kilimanjaro (McKenzie et al., 2010) also concludes that water re-charge from the forest belt is an
essential process in the hydrological system; (ii) the greatest amounts of annual precipitation occur
in the forest elevations (Hastenrath, 1984; Hemp, 2006; Mölg et al., 2009b); and (iii) a recent study
showed that land cover change on Kilimanjaro on and around the mountain, in particular forest loss
on the slopes (e.g. by illegal logging), affects meteorological processes that lead to a decline of rainfall
in the forest belt (Mölg et al., 2012). Thus the combination, and interaction, of rainfall and the forest
belt control water supply to the lowlands. In a UNEP context, the maintenance of the forest is of
utmost importance for regional-scale protection of water resources.
2. Glacier changes

The UNEP authors fail to provide a reliable, scientifically-based overview of glacier changes on the
three glacierized mountains of East Africa, since their references are either outdated, for the most
part not peer-reviewed and thus not appropriate to cite (e.g., their references ‘‘UNEP 2007’’,
‘‘UNESCO n.d.’’, ‘‘Vidal 2012’’), or short conference abstracts (their reference ‘‘Klein and Kincaid
2007’’). To the best of our knowledge, the latest peer-reviewed scientific quantifications of glacier
changes are Mölg et al. (2006b) for Rwenzori, Prinz et al. (2011) for Lewis Glacier on Mount Kenya,
and Cullen et al. (2012) for Kilimanjaro. These sources should be considered, and Fig. 1 compiles their
reported values. While the shrinkage of these glaciers is indeed dramatic, the data do not support the
Fig. 1. Changes in glacier surface area over time on Lewis Glacier/Mount Kenya (Prinz et al., 2011), Rwenzori (Mölg et al.,

2006b), and Kilimanjaro (Cullen et al., 2012). Right y-axes show the amount relative to the first available extent in the record,

(in %) and italic numbers along the curves are the mean rates of areal shrinkage (in thousands of square meters per year)

between the indicated and previous point in time. Errors of the surface area determinations are typicallyo5% (e.g., Mölg et al.,

2006b; Prinz et al., 2011) and thus do not impact the trends exhibited.
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UNEP article’s statement that the glaciers ‘‘are now receding at an unprecedented pace’’. Their
recession has been strong throughout the period of the records (Fig. 1).

Another flaw of the UNEP authors in the context of glacier changes is the insufficient distinction
between ice and snow. (i) Their Figure 3, for example, compares two images of Kilimanjaro, one with
and the other largely without snow cover. Such a pair of images cannot be used to illustrate glacier
recession, since the glaciers in one scene (‘‘early 1950s’’ in the UNEP article) are also covered
partially by snow. Thus the reduction of ‘‘white surface’’ in the images gives an incorrect
visualization of glacier shrinkage. The same error has been made before with other pairs of satellite
images and photos (e.g., initially on the NASA Earth Observatory website; subsequently on the front
cover of CLIVAR Exchanges, no. 47), and thus it was also pointed out before that this is a meaningless
attempt to document glacier change (Kaser and Allison, 2009). (ii) Figure 9 in the UNEP article is used
to support glacier recession in the Rwenzori Range, but the authors indicate ‘‘snow cover’’ in the
figure itself, which leaves the reader again with a comparison ‘‘apples and oranges’’. (iii) Also in the
satellite image pairs that are Figures 5 and 6 in the UNEP article, it is impossible for readers to
recognize the true glacier area. (iv) The confusion of ice and snow in the UNEP article also extends to
the title, ‘‘Africa without ice and snow’’. It is indeed a scientific result that East African glaciers could
vanish within the next few decades (e.g., Cullen et al., 2012), although uncertainty remains due to
the unknown evolution of future precipitation in East Africa, which is a crucial climatic driver of East
African glaciers (see below). However, even if the glaciers disappear, snow will continue to fall on the
summit of the three mountains during precipitation events. While it is very likely that the complete
loss of glaciers on East Africa will impact mountain tourism, the ‘‘beauty of the white-topped
mountains’’ (UNEP article) will persist in the aftermath of precipitation events, and thus continue to
exist preferably in the wet seasons that are centered around April/May and November/December.
‘‘Africa without snow’’ is therefore a wrong assessment for the 21st century.
3. The climatic drivers of glacier change

The attempt of UNEP authors to summarize why the glaciers on three East African massifs are
shrinking lacks one important differentiation. Key in this respect is that glaciers on Kilimanjaro occur
almost 1000 m higher than on Mount Kenya and Rwenzori, the two latter of which are situated close
to the mean 0 1C altitude (mean freezing level). It is well known from the physics of atmospheric
surface layer processes and concurrent surface-air energy and mass exchanges (Van den Broeke
et al., 2011) that glaciers located far above the mean freezing level show little sensitivity to air
temperature. This and the resultant dominant control of glaciers by precipitation (snowfall amount
and frequency and their effect on the glaciers’ radiation budget) has been shown in detail for glaciers
on Kilimanjaro (Mölg and Hardy, 2004; Mölg et al., 2008a, 2009a). Modern shrinkage of glaciers on
Kilimanjaro is therefore driven immediately by reductions in snowfall at the summit since the late
19th century (Mölg et al., 2009a). ‘‘A lack of rainfall’’, as stated by UNEP authors, is certainly not a
driver for the glaciers but a misleading reference to the liquid phase of precipitation. Higher air
temperatures in the course of the 20th century could only affect the lower-lying glaciers on Mount
Kenya and Rwenzori in a quantitatively important way, together with precipitation changes, which
Hastenrath and Kruss (1992) showed by simple considerations.

Despite the importance of regional and local precipitation, all three massifs are potentially
sensitive to our globally warming climate, since global climate change affects large-scale circulation
systems over the tropical oceans (e.g. Held and Soden, 2006; Lintner and Neelin, 2007) that transport
moisture to, and thus influence precipitation trends in East Africa (Mölg et al., 2006a, 2009a; Lyon
and DeWitt, 2012). The dynamics of the climate system will always result in direct and background
drivers of an observed change in a local phenomenon. In this regard a summary document of our
scientific findings for Kilimanjaro has been produced recently, and is available on the websites of our
author team (e.g., http://www.thomasmoelg.info/factsheet_kili.pdf).

A final noteworthy topic about the causes of glacier shrinkage in East Africa concerns sublimation,
which the UNEP authors mistakenly call the dominant ice loss mechanism. Only in the very dry,
highest glacierized portions of Kilimanjaro does sublimation dominate over melting locally (Mölg
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and Hardy, 2004; Cullen et al., 2007; Mölg et al., 2008a, 2009a), but lower on the slopes on
Kilimanjaro as well as at elevations where glaciers on Rwenzori and Mount Kenya occur, melting
removes more mass from the glaciers than sublimation on an annual basis (Mölg et al., 2009a;
Nicholson et al., 2012). And again, it is the small size of East African glaciers that prevents their role
in the mountain water budgets (see above), not the fact that sublimation occurs on these tropical
glaciers, as assumed by the UNEP authors.

In summary, the UNEP article published in Environmental Development (UNEP, 2013) only
partially provides the reader with the scientific basis of climate and glaciers in East Africa. We hope
that our present note helps to emphasize the primary sources of the topic discussed, and are of
general relevance to readers interested in East African glaciers and climate change.
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